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BACKGROUND: Low-cost, high-throughput in vitro bioassays have potential as alternatives to animal models for toxicity testing. However, incorporat-
ing in vitro bioassays into chemical toxicity evaluations such as read-across requires significant data curation and analysis based on knowledge of rel-
evant toxicity mechanisms, lowering the enthusiasm of using the massive amount of unstructured public data.

OBJECTIVE:We aimed to develop a computational method to automatically extract useful bioassay data from a public repository (i.e., PubChem) and
assess its ability to predict animal toxicity using a novel bioprofile-based read-across approach.

METHODS: A training database containing 7,385 compounds with diverse rat acute oral toxicity data was searched against PubChem to establish in
vitro bioprofiles. Using a novel subspace clustering algorithm, bioassay groups that may inform on relevant toxicity mechanisms underlying acute
oral toxicity were identified. These bioassays groups were used to predict animal acute oral toxicity using read-across through a cross-validation pro-
cess. Finally, an external test set of over 600 new compounds was used to validate the resulting model predictivity.
RESULTS: Several bioassay clusters showed high predictivity for acute oral toxicity (positive prediction rates range from 62–100%) through cross-
validation. After incorporating individual clusters into an ensemble model, chemical toxicants in the external test set were evaluated for putative acute
toxicity (positive prediction rate equal to 76%). Additionally, chemical fragment–in vitro–in vivo relationships were identified to illustrate new animal
toxicity mechanisms.
CONCLUSIONS: The in vitro bioassay data-driven profiling strategy developed in this study meets the urgent needs of computational toxicology in the
current big data era and can be extended to develop predictive models for other complex toxicity end points. https://doi.org/10.1289/EHP3614

Introduction
There are currently over 100,000 chemicals available on the market
that lack toxicity information, comprising roughly 90% of the
140,000 consumer products in use (Hartung and Rovida 2009;
Judson et al. 2009). Traditional toxicology evaluations require the
use of animal models for testing new compounds. However, these
animal models are costly and time-consuming, and they raise ethical
concerns regarding thewell-being of animals (Hartung 2017).Under
this paradigm, generating substantial toxicity data for a limited num-
ber of compounds could take years, and it would be financially
impossible to test all the available compounds using animal testing
protocols (Hartung 2016). In 2007, the National Research Council
Committee on Toxicity Testing and Assessment of Environmental
Agents addressed this issue by proposing a new framework to accu-
rately and more quickly evaluate the health risks due to environmen-
tal chemical exposures (National Research Council 2007). This
federal effort stressed the importance of integrating/establishing the
use of computational and in vitro–based alternative methods for
chemical risk evaluation. One such alternative, called read-across,

relies on using toxicity information from structurally similar com-
pounds to estimate the toxicity of untested compounds (Patlewicz
et al. 2014; Wang et al. 2012). This strategy can be used to fill toxic-
ity data gaps for untested chemicals and has been implemented by
various regulatory agencies (Hartung 2016). Previous read-across
studies relied solely on chemical structure similarity searching
(Enoch et al. 2008; Hewitt et al. 2010; Koleva et al. 2008;
Luechtefeld et al. 2016;Wu et al. 2013). However, this type of read-
across is not applicable for compounds with unique chemical struc-
tures and can be confounded by “activity cliffs” (i.e., structurally
similar compounds with distinctly different toxicity characteristics)
(Maggiora 2006). More recently, efforts to include biological infor-
mation as a basis for similarity in read-across approaches have
started (Zhu et al. 2016). Previous studies using biological data for
chemical toxicity evaluations weremostly based on in-house biolog-
ical data and were limited to specific mechanisms (Judson et al.
2015; Kleinstreuer et al. 2017). This paper addresses the challenge
of identifying and integrating biological data from various resources
into read-acrossmodeling.

In vitro high-throughput screening (HTS) is capable of rapidly
testing large numbers of chemicals to study their effects onmolecu-
lar targets using whole-cell and cell-free assays. Because of their
relatively low cost and high-throughput, efforts such as the
Toxicity Testing in the 21st Century (Tox21) program have
focused on the application of HTS techniques as the basis for
chemical hazard assessment (Attene-Ramos et al. 2013). The direct
result of these efforts is a rapidly growing amount of in vitro bioas-
say data being generated for thousands of chemicals and stored in
databases accessible to public users, allowing for new statistical
and computational techniques to be developed. The impact of such
large publicly available databases for chemical toxicity evaluation
is profound, with several projects having successfully used HTS
data to better evaluate chemicals for potential hazards (Browne
et al. 2015; Hartung 2016; Kim et al. 2016; Kleinstreuer et al.
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2017; Low et al. 2013; Zhang et al. 2014a; Zhu et al. 2014).
However, rapidly changing public data sources represent a
dynamic data landscape, and integrating such data to chemical in-
formation for toxicity evaluation is an area that remains largely
unexplored. Development of automated computational methods to
deeply exploit this rich and dynamic data landscape to establish
predictive nonanimal toxicity models is needed.

Acute oral toxicity testing is conducted to determine the im-
mediate health effects of an orally administered chemical sub-
stance and is expressed in terms of the lethal dosage that kills
50% of the population (LD50) of animals tested (Strickland et al.
2018). Acute oral toxicity data are used by a number of regula-
tory agencies for hazard classification and labeling of products to
alert handlers and consumers of potential toxicity hazards, to
determine acceptable human exposure limits and personal protec-
tive equipment needed for handling, and determine countermeas-
ures that should be employed in the event of toxic exposures
(Corvaro et al. 2016; Strickland et al. 2018; Walum 1998). In
some cases, acute oral toxicity data may be used to establish
doses for longer-term studies, identify target organs for toxicity,
and assess the hazard of accidental ingestions of chemical con-
taminants in food (Strickland et al. 2018). To date, there are no in
vitro tests accepted by regulatory agencies as stand-alone replace-
ments for acute oral animal tests (Kinsner-Ovaskainen et al.
2009; Strickland et al. 2018).

Here, we present a new computational technique to automati-
cally extract pertinent data from PubChem, which is updated
daily, and develop a predictive ensemble model for estimating
acute oral toxicity (outlined in Figure 1). In this work, a large
dataset consisting of compounds with broad acute oral toxicity
values was profiled by their PubChem in vitro bioassay data to

generate bioprofiles. Using these initial bioprofiles, we character-
ized and clustered mechanistically similar PubChem bioassays
using fragments of the chemicals tested within them. The result-
ing chemical fragment–in vitro–in vivo relationships were the
foundation for bioprofile-based read-across studies conducted
using clusters of PubChem bioassays considered to inform on
similar toxicity mechanisms.

Methods

Acute Oral Toxicity Datasets
An in-house rat acute oral toxicity database was previously col-
lected and curated from ChemIDplus (https://chem.nlm.nih.gov/
chemidplus/; Zhu et al. 2009). This in-house rat acute oral toxic-
ity database was used as the training set and consisted of 7,385
compounds with their most conservative LD50 values (i.e., lowest
recorded LD50 value for a single compound) ranging from
0:02 lg=kg to 389:39 g=kg (Figure 2A). For modeling purposes,
the LD50 values were normalized by the following logistic function:

f xð Þ= e
x− x0

s

1+ e
x− x0

s

, (1)

where x represents a log10-transformed LD50 (logLD50) value, xo
represents the midpoint of the curve, and s is a number to control
the shape of the curve. Figure 2B shows the relationship between
the logistic function outputs and the logLD50 values through vari-
ous values of s. The outputs of the logistic function are all
between 0 and 1, so we chose the threshold of 0.5 to distinguish
toxic (f ≥ 0:5) and nontoxic (f <0:5) compounds. To obtain a

Figure 1. Overview of the data-driven read-across approach developed in this study. (A) Profiling compounds via PubChem portal, (B) clustering PubChem
assays based on chemical fragment in vitro relationships, (C) identifying bioassays capable of predicting acute oral toxicity, and (D) predicting new toxicants
by read-across and mechanism illustrations.
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balanced dataset and easily interpretable cutoff, we set the mid-
point (xo) at 3 (which is equivalent to 1,000 mg=kg), yielding
3,791 toxic and 3,594 nontoxic compounds.

A separate dataset consisting of 3,852 compounds with rat
acute oral LD50 values was collected from a variety of sources,
including ChemIDplus (https://chem.nlm.nih.gov/chemidplus/),
the Hazardous Substances Data Bank (https://toxnet.nlm.nih.gov/
newtoxnet/hsdb.htm), European Chemical Agency (https://echa.
europa.eu/information-on-chemicals), and the U.S. Environmental
Protection Agency (EPA) (U.S. EPA 2016). This dataset served as an
external test set to evaluate the generated models. We refined this
dataset by excluding compounds already included in the training set,
standardizing chemical structures, and removing compounds with an
LD50 value reported as a range (e.g., LD50 > 500 mg=kg). Thus, the
curated external test set ultimately contained 639 compounds with
LD50 values ranging from 0:012 mg=kg to 63:97 g=kg. These LD50
values were also converted to classifications using the logistic func-
tion (including the same threshold andmidpoint) as described above.

Bioprofiling and Subspace Clustering of PubChem Data
To form a training set of compounds for modeling, public in vitro
bioassay data for 7,385 compounds were extracted from PubChem
(https://pubchem.ncbi.nlm.nih.gov/) using an automatic data min-
ing portal (http://ciipro.rutgers.edu/) (Russo et al. 2017; Zhang
et al. 2014a). To establishmeaningful relationships between chem-
ical fragment descriptors and PubChem bioassays, a feature
reduction approach was applied. Briefly, those bioassays with
very limited data across the chemicals in our training set were
removed to avoid overfitting by training the model using minimal
signal. Thus, only bioassays with at least five active responses
among the training set compounds were included in the modeling
procedure. This effort resulted in a sufficiently large dataset con-
taining 3,543 training set compounds with in vitro data from
1,077 PubChem bioassays.

The bioactivity values of the 3,543 training set compounds
across each of the 1,077 PubChem assays comprised the initial bio-
profile. To identify potential toxicity mechanisms and further opti-
mize the initial bioprofile, the 1,077 PubChem bioassays were
clustered based on shared chemical fragments relevant to bioassay
responses. To achieve this, we used the established ToxPrint fin-
gerprints, a set of 729 chemical fragments relevant to toxicity
reported in a previous study (Yang et al. 2015); fingerprints were
generated using ChemoTyper (Molecular Networks GmbH,
Erlangen, Germany) software (version 1.0). Then, the relationship
between these ToxPrint fragments and each PubChem bioassay
were determined using Fisher’s exact test. Fisher’s exact test requires
constructing a 2 × 2 contingencymatrix,whichwe define below:

Compounds with fragment Compoundswithout fragment
Compounds active in assay a b
Compounds inactive in assay c d

(2)

where a is the number of compounds with an active response in
this assay and contain this fragment, b is the number of com-
pounds with an active response and do not contain the fragment,
c is the number of compounds with an inactive response and con-
tain the fragment, and d is the number of compounds with an
inactive response and do not contain the fragment.

The output of this test is a p-value denoting the statistical signifi-
cance of the relationship between the fragment and bioassay activ-
ity. When considering multivariate comparisons, it is necessary to
ensure that the resulting correlations are not spurious. However,
strict multiple testing corrections, such as the Bonferroni correction,
greatly reduced the number of significant relationships (<90% and a
loss of ∼ 60% of the biological data) and were conservative for
inclusion purposes. Alternatively, the number of false positives was
approximated in this analysis by comparing p-values to those
obtained from a permutation test (Figure S1). The standard p-value

Figure 2. Activity distribution for compounds in this study. (A) Histogram for the 7,385 log-transformed LD50 values from compounds in the original dataset (hashed
bars in background) and the final 3,543 compounds with biological data ultimately used for modeling (solid bars in foreground). The parameter, x0, is equal to the
midpoint of the logistic curve displayed in (B) and was used as the cutoff for determining compound toxicity. (B) The parameter s controls the shape of the curve.
Lines represent the logistic function at various values for s (0.1 through 0.9 at steps of 0.1). The final curve, with s=0:5, is bold. The thin areas on the line indicate
log-transformed LD50 values <2:5 or >3:5 and their corresponding values in f space. The thick line indicate log-transformed LD50 values ≥2:5 and < =3:5.
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threshold (p-value <0:05) was chosen to define significant relation-
ships, whichwas sufficient for minimizing spurious correlations.

PubChem bioassays sharing many significant fragments could
be related and/or unveil potential mechanisms of oral acute toxic-
ity for specific chemical toxicants. To group similar assays, the
Jaccard dissimilarity (Jd) between each bioassay was calculated
using the fragment profile, defined as:

Jd A,Bð Þ=1−
jA \ Bj
jA [ Bj , (3)

where A and B represent the sets of significant fragments for
PubChem bioassays A and B, respectively. Calculating dissimi-
larity (Jd) between bioassays allows for the representation of
potential relationships among assays as a network graph, where
nodes represent bioassays, and edges are the Jd values between
two bioassays. The network graph was created and manipulated
using the software package Gephi (https://gephi.org/) (version
0.9.1). Clusters of PubChem assays were determined by using the
Louvain modularity algorithm available within the Gephi software
package, using the “resolution” parameter to determine the bioas-
says that belong to the same cluster (Blondel et al. 2008). A larger
resolution value allows more bioassays to form larger clusters, and
a smaller resolution value restricts bioassays with higher similarity
to small clusters. A resolution value of 0.25 was used in this study,
with the maximum number of bioassays in the resulting clusters
set to 60.

Bioassay-Based Read-Across for Acute Oral Toxicity
Classifications
We delineated clusters of bioassays that were highly predictive of
acute toxicity to identify relevant bioassays and unveil potential
toxicity mechanisms. Read-across studies were then performed
using the bioassay responses within a cluster to predict acute oral
toxicity classification; prediction results were evaluated by five-
fold cross-validation. If bioassays showed highly correlated
responses with at least 10 mutual test responses (R2 > 0:9), one
of them was randomly selected and incorporated into model
building, and the other highly correlated assays were removed
from any further analysis. Training set compounds with at least
one in vitro bioassay response in a cluster were randomly split
into five equivalent subsets. For each of five iterations, one sub-
set acted as a pseudotest set, while the remaining compounds
served as a pseudotraining set. The acute oral toxicity classifica-
tion of each validation set compound was predicted by the most
biosimilar compound in the modeling set, based on sharing the
most similar PubChem bioassay responses within the cluster.
The biosimilarity between two compounds in a cluster c can be
calculated by:

Biosimilarity A,Bð Þc
=

jAa \ Baj+ jAi \ Bij � w
jAa \ Baj+ jAi \ Bij � w+ jAa \ Bij+ jAi \ Baj , (4)

where Aa and Ba represent the sets of active responses in
PubChem bioassays within a cluster c for compounds A and B,
respectively. Conversely, the terms Ai and Bi represent the sets
of inactive responses. The term w weights the inactive
responses less than active responses since the proportion of
active data, which indicates more significant biological phe-
nomena, is much lower than inactive data. In this study, w was
calculated as the ratio of total active responses to total inactive
responses for each cluster.

Public bioassay data is inherently sparse, and therefore, calcu-
lating biosimilarity alone can offer misleading results due to

missing data. For example, when two compounds are both only
tested in one assay within a cluster, their biosimilarity result is
less reliable than two other compounds that share responses in
multiple assays. For this reason, the relative cluster confidence
(rcc) of a biosimilarity calculation was also computed using the
equation below:

rcc A,Bð Þc =
jAa \ Baj+ jAi \ Bij � w+ jAa \ Bij+ jAi \ Baj

N
,

(5)

where N is the number of noncorrelated assays in cluster c (i.e.,
total number of bioassays used in the model). Here, a high rcc is
indicative of the two compounds being tested in many of the
same assays within a cluster.

The underlying mechanisms responsible for toxicity in animal
acute oral studies are vast, and thus, it is unlikely to expect a few
bioassays to explain all the various toxic phenomena. Therefore,
when using bioassays as models for acute oral toxicity, it is rea-
sonable to expect a relatively high false negative rate (compounds
inactive in bioassay response yet active in acute oral animal tox-
icity test). In these cases, toxicity may be elicited via mechanisms
that are not represented by the biochemical coverage of the in
vitro assays mined. Therefore, to focus on the ability to identify
toxic compounds, the positive predictive value (ppv) was used to
evaluate the model performance and is defined as

ppv=
TP

TP +FP
, (6)

where TP represents the number of true positives (toxic com-
pounds correctly predicted as toxic), and FP represents the num-
ber of false positives (nontoxic compounds incorrectly predicted
as toxic).

Quantitative Structure–Activity Relationship Models
Missing data severely limits the identification of relationships in
this study. Simple data imputation methods, such as random sam-
pling, are not sufficiently robust and may create further issues. In
order to correctly impute biological data, especially for the toxi-
cants with missing data, more reasonable data imputation methods
were necessary. To realize this, Random Forest and Naïve Bayes,
both implemented using the Python library scikit-learn (version
0.18.1), were used to develop quantitative structure–activity rela-
tionship (QSAR) models (Pedregosa et al. 2011). These QSAR
approaches were implemented for PubChem bioassays to fill in the
missing bioassay data, allowing for sufficient data points to evalu-
ate chemical fragment–in vitro–in vivo relationships (i.e., when
prediction performance is increased by the presence of a toxico-
phore). More specifically, of the original 7,385 chemicals identified
from the in-house rat acute oral toxicity database, only 3,543 had
sufficient bioassay data for initial analyses. To increase scope for
later chemical fragment–in vitro–in vivo relationship analyses, the
remaining 3,842 chemicalswere subjected to theQSARworkflow.

Random Forest is an ensemble algorithm consisting of con-
structing many decision trees and then making a prediction by
combining the output among the trees (Breiman 2001). Naïve
Bayes is an algorithm that predicts by estimating the probability
of membership to a certain class using Bayes theorem (Friedman
et al. 1997). The QSAR model development herein followed the
workflow used in our previous studies and briefly outlined below
(Kim et al. 2014; Solimeo et al. 2012; Sprague et al. 2014; Wang
et al. 2015; Zhao et al. 2017).

The training data for QSAR model development was retrieved
from PubChem’s PUG-REST web service by using a PubChem
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Assay Identifier (AID) as the query (Kim et al. 2015). The infor-
mation retrieved for a single bioassay included chemical struc-
tures and activity classifications (active/inactive/inconclusive) for
all tested compounds in the bioassay. First, inconclusive results
were eliminated. Then, the active/inactive ratio was balanced by
randomly selecting and eliminating compounds until an equal ra-
tio was achieved. Training set data was set to not exceed 10,000
compounds. The rdkit implementation of extended-connectivity
fingerprints was used as chemical features for the remaining com-
pounds in QSAR model training (Rogers and Hahn 2010).

A fivefold cross-validation procedure available within the
scikit-learn package was used to evaluate the resulting models.
This procedure searched and stored the models based on fivefold
cross-validation prediction accuracy (acc) as defined as:

acc=
TP +TN

TP +FP +TN +FN
, (7)

where true positive (TP) is the number active compounds cor-
rectly predicted as active, false positive (FP) is the number of
inactive compounds incorrectly predicted as active, false negative
(FN) is the number of active compounds incorrectly predicted as
inactive, and true negative (TN) is the number of inactive com-
pounds correctly predicted as inactive. Only models with a cutoff
of acc>0:6 were used to fill data gaps for substances with miss-
ing in vitro bioassay results. If both Random Forest and Naïve
Bayes models had an acc>0:6 for the same PubChem assay, the
model with higher acc value was used.

Mechanism-Driven Toxicity Pathway Analysis
By integrating QSAR predictions into bioprofiles to address
missing data (i.e., for chemicals that were not tested), chemical
fragment–in vitro–in vivo relationship analyses can be per-
formed by examining the chemical fragments of the compounds
with predicted bioassay results. If compounds contain a specific
chemical fragment that produces superior prediction accuracy
within a cluster, this chemical fragment can be selected as a
potential toxicophore, which is the principal chemical feature to
induce a toxicity pathway (Allen et al. 2014). In this way, new
toxicity mechanisms can be revealed by linking chemical frag-
ments, relevant in vitro bioprofiles, and in vivo acute oral
toxicity.

Results

Acute Oral Toxicity Classifications
A logistic function (f) was used in this study to convert experimen-
tal log-transformed LD50 (logLD50) values into classifications
(toxic/nontoxic), applying a threshold of f ≥ 0:5 to define toxic
compounds based on an established LD50 cutoff of 1,000 mg=kg.
This threshold balances the toxic/nontoxic ratio (see “Methods”
section) and is close to the EPA’s current criterion to classify acute
oral toxicants as Category II (50<LD50 ≤ 500 mg=kg) or Category
III (500<LD50 ≤ 5,000 mg=kg) (U.S. EPA2012).

Many compounds have logLD50 values close to the threshold
(i.e., a logLD50 of 3± 0:5), making these compounds difficult to
classify as overtly toxic or nontoxic. Changing the parameter s
has the effect of shrinking or extending the range of the outputted
values of compounds close to this threshold (bold line in Figure
2B). By selecting an s value of 0.5, the outputted f value of these
compounds would fall between 0.75 and 0.25 (e.g., logLD50
value as 2.5 with the associated f output as 0.75). As shown in
Figure 2A,B, many compounds in the database can fall within
these two areas.

Subspace Clustering of PubChem Assays
Among the 1,077 PubChem bioassays in the original bioprofile,
707 had at least one ToxPrint chemical fragment that was signifi-
cantly correlated with activity, resulting in a total of 15,064 signifi-
cant chemical fragment–in vitro bioassay activity relationships
(p-value<0:05). These relationships were used to cluster the
PubChem assays by calculating the dissimilarity (Jd) between ev-
ery pair of bioassays. As shown in Figure 3, the edges between two
nodes (bioassays) indicate dissimilarity values less than 0.75.
Sixty-seven bioassays are unique compared to others (no Jd values
less than 0.75) and are not shown in this figure. Within the remain-
ing 640 bioassays, theLouvainmodularity algorithm (Blondel et al.
2008) identified 45 unique clusters with 2 to 60 bioassays per clus-
ter (Excel Table S1). The clusters result in grouping bioassays that
are potentially related in their ability to inform on biological mech-
anism as it pertains to acute oral toxicity.

The 640 bioassays came from different source depositors,
which are summarized in Table 1. Bioassays from different sources
coexisted within clusters, with 37 out of 45 clusters containing bio-
assays from≥two sources. The biological targets of bioassays var-
ied, and the majority could be classified as overt toxicity (e.g.,
cytotoxicity assays), biomarkers of cellular responses (e.g., mito-
chondrial membrane potential assays), or specific protein targets
(e.g., agonists of the androgen receptor). Some clusters showed a
clear preponderance of one bioassay type (e.g., Cluster 1 consisted
of only cytotoxicity assays).

Acute Oral Toxicity Model Selection and Ensemble
Modeling
For modeling purposes, the 45 PubChem bioassay clusters shown
in Figure 3 were evaluated for their ability to predict acute oral
toxicity. Bioprofile-based read-across studies were performed
within each cluster and assessed using a fivefold cross-validation
procedure. Different thresholds of biosimilarity (ranging from 0.5
to 0.9) and rcc values (ranging from 0 to 100%) were used to
determine the most similar compound in the training set to a test
compound. The best ppv for each cluster was recorded, with
cross-validated ppv values from 0 to 100% across the bioassay
clusters (Figure 4). The clusters with a ppv above 60% were
selected as viable potential models of acute oral toxicity. To
ensure the models are statistically significant and interpretable,
clusters with <five bioassays were removed. This procedure
resulted in 19 PubChem bioassay models that were potentially
applicable for acute oral toxicity prediction. In order to leverage
predictions across multiple models (and thus multiple potential
biological mechanisms), an ensemble model was created by aver-
aging the predictions across all the cluster-specific models.

PubChem Bioassays Selected for Acute Toxicity
Classifications
The PubChem bioassays identified by our approach for toxicity
predictions came from a variety of screening programs. These pro-
grams have different research goals and vary in scope and size, and
many were not designed to be used for acute oral toxicity evalua-
tion purposes. However, the analysis of the top-ranked cluster-
based models unveiled several mechanisms clearly relevant to
acute oral toxicity, including cytotoxicity/growth inhibition in cells
of various origins including tumor cell lines, viral growth inhibi-
tion, and assaysmeasuring protein interaction and/or function.

Cluster 1 had the highest accuracy in the cross-validation pro-
cedure (100% ppv). It consisted entirely of data deposited from
the Developmental Therapeutics Program at the National Cancer
Institute (NCI). The 17 NCI bioassays comprising Cluster 1 mea-
sure cytotoxicity/growth inhibition against tumor cell lines and
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have been shown to be highly correlated with acute toxicity in an
earlier study (Zhang et al. 2014a). Cluster 2 (96% ppv in the
cross-validation procedure) included not only cytotoxicity assays
from NCI but also a significant number of bioassays with protein

targets regulating cell growth (e.g., steroid receptor coactivators
1 and 3, paternally expressed gene 3, hypoxia-inducible factor 2
alpha). Cluster 3 (87% ppv in the cross-validation procedure) con-
tained 60 PubChem in vitro bioassays and was the largest among all

Table 1. Source depositors of the PubChem 640 assays used in this study.

Source institution Number of assays Cluster membershipa

NCGC 200 2, 3, 4, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26,
27, 28, 29, 30, 32, 35, 36, 37, 39, 40, 41, 42, 44, 45

Tox21 114 3, 9, 10, 11, 12, 15, 17, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32,
33, 38, 44

DTP/NCI 96 1, 2, 5, 6, 7, 8, 10, 18, 19, 20, 21, 27
Scripps Research Institute Molecular Screening Center 67 2, 3, 4, 5, 8, 10, 14, 16, 18, 19, 20, 21, 27, 35, 37, 39, 40
Sanford-Burnham Center for Chemical Genomics 41 2, 3, 4, 5, 8, 10, 14, 15, 18, 20, 21, 27, 35, 37, 43, 45
Broad Institute 31 2, 3, 8, 10, 12, 14, 16, 18, 20, 21, 27, 34, 35
Cheminformatics and Chemogenomics Research Group 16 3, 15, 17, 20, 24, 27, 29, 32, 36
EPA DSSTox 11 3, 6, 7, 37, 38
Johns Hopkins Ion Channel Center 11 3, 10, 13, 17, 20
Southern Research Institute 10 3, 14, 15, 17, 20, 21, 24
Southern Research Specialized Biocontainment Screening Center 10 3, 12, 27, 37
Emory University Molecular Libraries Screening Center 9 3, 14, 21, 28
University of New Mexico 8 14, 18, 20, 21, 41
ICCB-Longwood/NSRB Screening Facility, Harvard Medical School 4 3, 12, 14
Vanderbilt High Throughput Screening Facility 3 3, 17, 20
Columbia University Molecular Screening Center 2 14
University of Pittsburgh Molecular Library Screening Center 2 3,17
ChEMBL 2 14, 27
Milwaukee Institute for Drug Discovery 1 4
Institute for Research in Immunology and Cancer 1 10
Psychoactive Drug Screening Program 1 20

Note: ChEMBL, European Molecular Biology Laboratory chemistry database; DTP/NCI, Developmental Therapeutics Program/National Cancer Institute; EPA DSSTox,
Environmental Protection Agency Distributed Structure-Searchable Toxicity Database; GPCR, G protein–coupled receptors; ICCB, Institute of Chemistry and Cell Biology; NCGC,
National Center for Advancing Translational Sciences Chemical Genomics Center; NSRB, National Screening Laboratory for the Regional Centers of Excellence for Biodefence and
Emerging Infectious Diseases; Tox21, Toxicity Testing in the 21st Century.
aCluster membership displays an exhaustive list of all the clusters to which a particular source has at least one bioassay belong to, as identified by the Louvain modularity algorithm.

Figure 3. Similarity map of PubChem in vitro bioassays used in this study. Nodes represent PubChem assays; edges represent Jaccard dissimilarity computed
based on chemical fragment bioprofiles. In total, 45 distinct clusters were identified by the Louvain modularity algorithm. Nodes belonging to the same cluster
are presumed to have a shared biological relevance and were used to perform read-across.
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19 selected clusters. It consisted of data deposited from the National
Center for Advancing Translational Sciences (formerly National
Chemical Genomics Center) (25%), the Scripps Research Institute
(20%), Tox21 (12%), Emory University Molecular Libraries
Screening Center (10%), Johns Hopkins University (8%), and others
(25%). Only a few of these bioassays were cytotoxicity assays, with
the majority being associated with protein targets, including nuclear
receptors,membrane channels, kinases, and various enzymes. Cluster
8 (ppv 80%) consisted of a mixture of cell viability, protein targets,
and viral bioassays fromfive sources.

Ensemble Predictions for New Compounds
Prior experimentation has demonstrated that integration of multiple
models can show superior predictivity to individual models (Kim
et al. 2014; Solimeo et al. 2012; Sprague et al. 2014; Wang et al.
2015; Zhao et al. 2017; Zhu et al. 2009). In this project, one such
approach was applied, which involved generating an ensemble
model using the 19models selected (i.e., those having ppv>60%) to
predict acute oral toxicity. For evaluation purposes, the resultedmod-
els were used to predict an external test set consisting of 639 com-
pounds that were not present within the original training set. To build
the ensemble model, bioprofile-based read-across prediction output
values were averaged, per chemical, from all 19 models (Figure 5).
Many new compounds contained varying amounts of in vitro biolog-
ical data among the 19 PubChem bioassay clusters, and the read-
across performancewas also different among these 19models.When
applying increasing thresholds of confidence for the read-across pre-
dictions, some of these models were not able to provide predictions
for new compounds due to insufficient data in the associated
PubChem bioassays. To quantify this source of uncertainty, confi-
dence values (rcc) were computed and evaluated. Ensemble model
predictions made with a low confidence threshold (e.g., rcc values
≤10%, indicating that the external test set chemical and training set
chemical were tested in few of the same bioassays) resulted in poor
prediction of new compounds with ppv of 60%. However, when
the confidence threshold was increased to eliminate unreliable

predictions (e.g., rcc values >30%), the ppv value increased signifi-
cantly (ppv>76%). This improved ensemble model performance at
higher confidence thresholds was similar to the cross-validation
results of themost selectedmodels shown in Figure 4.

Toxicity Pathways for Acute Oral Toxicity
To identify potential toxicity mechanisms from predictions,
chemical fragment–in vitro–in vivo relationship analysis was per-
formed within each individual cluster. Unfortunately, a complete
dataset is critical for this analysis. To resolve the missing data
issue, QSAR model predictions were used to fill in the missing
data for the 3,842 compounds that were initially omitted from the
training set due to insufficient bioassay data. The use of QSAR
model predictions will add additional uncertainty since the
QSAR model predictivity of PubChem bioassay responses for
new compounds was generally around 70% (Figure S2).

The population of the bioprofile data by QSAR predictions
can provide insights to reveal potential toxicity mechanisms
within each cluster. For example, investigation into the chemical
scaffolds of the predicted toxic compounds within a cluster can
reveal toxicophores related to acute oral toxicity. These toxico-
phores can be used to explain toxicity mechanisms by integrating
bioassay data used for read-across in relevant clusters. Two of
the 19 clusters showed exceptional chemical fragment–in vitro–
in vivo relationships.

Cluster 1, consisting of 17 NCI tumor cell line growth inhibi-
tion assays, had 24 predicted toxic compounds at an rcc of 100%,
13 of which were true positives (i.e., toxic in vivo) and 11 of
which were false positives (i.e., nontoxic in vivo based on our
toxic/nontoxic designations using a 1,000-mg=kg threshold).
Examination of the chemical structures of the true positives and
false positives (Figure 6; Excel Table S2) revealed distinctly dif-
ferent chemical scaffolds and suggested a potential toxicophore.
Within the compounds predicted as toxic by this model, eight
compounds had a steroid backbone (Figure 6B), and seven were
classified as toxic in acute oral animal studies. Additionally, 10

Figure 4. Individual cluster model–specific positive predictive value (ppv) results from fivefold cross-validation. Numbers along the x-axis correspond to clus-
ters identified within the network in Figure 2. The first 25 clusters have ppv>60% (shaded area), although five have less than five bioassays (marked by “x”)
and were omitted from further analyses.
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Figure 5. Bioprofile-based prediction performance on the external test set of 639 chemicals. The 639 external test set compounds were used to evaluate the pre-
dictivity of 19 clusters and the ensemble model at varying relative cluster confidence (rcc) levels. (A) Positive predictive value (ppv) of the ensemble model at
increasing rcc thresholds (same x-axis as grid plot in panel B). (B) Grid plot showing confusion matrices of the ensemble model and the individual clusters at
different rcc thresholds. Each confusion matrix contains the number of false positives (upper left corner), true positives (upper right corner), false negatives
(lower left corner), and true negatives (lower right corner) for a model at a particular rcc threshold.
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of the 17 bioassays in this model had this chemical fragment stat-
istically relevant to their activity by Fisher’s exact test.

Cluster 8 consisted of seven cytotoxicity assays and seven pro-
tein and viral targets, the latter of which are listed in Table 2. This

model showed a remarkable predictivity (modeling and external
test sets had ppv of 80 and 63%, respectively). The associated toxi-
cophore within this cluster is a trifluoromethyl-substituted benzim-
idazole ring (Figure 7). While this ring structure appears in 129 of

Figure 6. Cluster 1 predictions. (A) Principal component analysis (PCA) of Cluster 1 model predictions (true positives as highlighted circles and false positives
as diamonds). (B) Two examples of true positive compounds with their common representative substructure in bold. (C) Two examples of false positive com-
pounds with their common representative substructure in bold.
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the predicted chemicals, and all but one was toxic based on our
classification criteria, not all were within the domain of this clus-
ter’s model. Yet the 46 toxic compounds that contained this frag-
ment and were within the domain of this cluster’s model were all
correctly classified as toxic (Excel Table S3). This highlights the
important role of an applicability domain assessment, which we
integrated into the evaluation of the model. The compounds con-
taining this toxicophore are pesticides and behave as casein kinase
2 (CK2) inhibitors, (e.g., 4,5,6,7-tetrabromobenzimidazole, CAS
749,234-11-5) (Adamson et al. 1984; Jones and Watson 1965;
Pagano et al. 2004).

Discussion
We have recently advocated for the integration of biological in-
formation, such as data from PubChem, into read-across (Zhu

et al. 2016). In this study, we demonstrated a novel approach to
integrate diverse in vitro data from a rapidly evolving public
resource to serve as the foundation for bioprofile-based read-
across predictions. The resulting bioassay cluster-based predic-
tive models, and the ensemble model generated by combining
cluster predictions, show great promise for predicting acute oral
toxicity as well as informing on possible mechanisms contribut-
ing to toxicity.

The success of bioprofile-based read-across for the external
test set (Figure 5) was different for each model as compared to
the cross-validation within training sets (Figure 4). For example,
Cluster 1, which mostly consisted of growth inhibition/cytotoxic-
ity assays and yielded the best cross-validation accuracy (Figure
4), had no significant contribution to the external test set predic-
tions, as shown in Figure 5. This is due to the lack of sufficient
bioassay data for the external test set compounds in the subset of

Table 2. PubChem Assays involving protein or viral targets within Cluster 8 model.

PubChem AID Name Target

488899 MITF measured in cell-based system using plate reader Microphthalmia-associated transcription factor (Homo sapiens)
504444 Nrf2 qHTS screen for inhibitors Nuclear factor erythroid 2–related factor 2 isoform 2 (H. sapiens)
540276 qHTS for inhibitors of binding or entry into cells for Marburg

virus
Gene 4 small orf (Marburg virus)

588413 uHTS identification of Gli-Sufu antagonists in a luminescence
reporter assay

Glioma-associated oncogene 1 (Mus musculus)

624169 Luminescence-based cell-based primary high- throughput
screening assay to identify agonists of the mouse 5-hydroxy-
tryptamine (serotonin) receptor 2A (HTR2A)

5-Hydroxytryptamine receptor 2A (M. musculus)

624354 uHTS identification of Caspase-8 TRAIL sensitizers in a lumi-
nescence assay

Tumor necrosis factor receptor superfamily member 10B isoform 1
precursor (H. sapiens)

651820 qHTS assay for inhibitors of hepatitis C virus (HCV) Hepatitis C virus

Note: MITF, microphthalmia-associated transcription factor; Nrf2, nuclear factor erythroid 2–related factor 2; qHTS, quantitative high-throughput screening; TRAIL, tumor necrosis
factor-related apoptosis-inducing ligand; uHTS, ultra-high-throughput screening.

Figure 7. Cluster 8 predictions. (A) Principal component analysis (PCA) of Cluster 8 model predictions (true positives as highlighted circles and false positives
as diamonds). (B) Three examples of true positives and the potential toxicophores associated with this cluster in bold are shown.
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PubChem bioassays. Although cytotoxicity assays have been pro-
ven to be useful in predicting acute oral toxicity (Barile et al.
1994; Garle et al. 1994; Ukelis et al. 2008), these bioassays will
not contribute to predicting the toxicity of new compounds if the
new compounds lack sufficient data. This issue can be solved by
predicting new compound bioactivity in vitro (e.g., by QSAR
modeling conducted herein and accepting an additional margin of
uncertainty) or by testing new compounds using these bioassays.
Consensus models have typically provided superior or equivalent
predictivity relative to the individual models in our previous
QSAR studies (Kim et al. 2014; Solimeo et al. 2012; Sprague
et al. 2014; Wang et al. 2015; Zhao et al. 2017; Zhu et al. 2009).
Here we used a similar approach, where an ensemble model was
used to partially resolve this issue of insufficient data. Using this
approach, the predictivity for new compounds in the external test
set showed good ppv (76%) at reasonable prediction confidence
(rcc of 30%) but with a low coverage (∼ 10%). This reflects the
importance of having enough bioassay data to evaluate new com-
pounds for our bioprofile-based prediction approach to succeed.

In both fivefold cross-validation and the external evaluation,
cytotoxicity assays appear as strong predictors of acute oral toxic-
ity. The best performing models in fivefold cross-validation con-
tain cytotoxicity assays from NCI (e.g., those in Clusters 1 and 2);
however, they lacked sufficient data for evaluation purposes using
the external test compounds. On the other hand, Clusters 11 and 23
showed accurate predictivity and contained many cytotoxicity
assays from the Tox21 screening program. With reasonable confi-
dence (rcc of 30%), they both showed high predictivity for the
external test set compounds (ppv of 88% and 68%, respectively).

Unfortunately, the external test set compounds were not numer-
ous enough to establish meaningful chemical fragment–in vitro–
in vivo relationships. However, by using the QSAR predictions,
enough data could be generated to see relationships between certain
chemical fragments and in vitro bioassay activity responses within a
cluster. This information can be used to enhance read-across predic-
tions and/or explore toxicity mechanisms. While the use of QSAR
undoubtedly introduces uncertainty into the read-across predictions,
manual review of the model outputs (namely, chemical scaffolds of
predicted compounds) can aid in bolstering confidence in the results.
For example, identifying the distinction of true positive vs. false
positive predictions within Cluster 1 (Figure 6) was explored. This
cluster consisted entirely of cytotoxicity/growth inhibition bioas-
says in immortalized cell lines. Many of the true positives in these
bioassays were steroids, which have been established as lead anti-
cancer agents stemming from their affinity for nuclear receptors
(Carvalho et al. 2010; Gupta et al. 2013). Indeed, the literature sup-
ports that steroid type toxicants induce acute toxicity because of cy-
totoxicity (Tantawy et al. 2017; Ur Rahman et al. 2017). On the
other hand, 10 of the 11 false positive compounds were antibiotics
that contain a large ring structure (greater than six members).
Because of this unique chemical structure, antibiotics are likely to
bemisclassified by theQSARmodels and should likely be excluded
from the domain of applicability for the Cluster 1 model. These
results suggest that cytotoxicity assays are reasonable alternative
approaches for screening steroids to inform on acute oral toxicity
and highlight the implications of conducting applicability domain
assessments. Another considerationworth noting is that these bioas-
says use human cell lines but are being used to predict acute oral tox-
icity identified in rats. However, we do not expect a significant
interspecies effect with regards to cytotoxicity assays because previ-
ous studies have demonstrated good concordance between cytotox-
icity results obtained from rat and human cell lines (Clemedson and
Ekwall 1999; Clothier et al. 2013).

Cluster 8 contained several pesticides that are putative CK2
inhibitors sharing a benzimidazole ring (Figure 7). CK2 is a

serine/threonine protein kinase targeting a wide array of proteins
involved in several cell processes, including mediating cell cycle
and apoptosis (Hamacher et al. 2007; Litchfield 2003; Yamane
and Kinsella 2005), and at least two PubChem bioassays within
this cluster are relevant to it. The first assay (PubChem AID
504444) screens for inhibitors of nuclear factor erythroid 2–
related factor 2 (Nrf2), a transcription factor intimately involved
in the cellular response to oxidative stress (Hur and Gray 2011).
Nrf2 responds to oxidative stress by translocating to the nucleus,
where it binds to the antioxidant response element (ARE) and
induces expression of an array of genes encoding antioxidants
(Jaiswal 2004). It has been shown that Nrf2 phosphorylation by
CK2 is required for translocation to the nucleus and subsequent
ARE activation (Apopa et al. 2008; Pi et al. 2007). Another assay
(PubChem AID 588413) measures the inhibition of Gli1, a tran-
scription factor involved in the hedgehog (Hh) signaling pathway
(Ruiz i Altaba 1999; Villavicencio et al. 2000). The Hh pathway
is involved in cell proliferation, cell maintenance, cell differentia-
tion, and embryonic development (Gupta et al. 2010; Mahindroo
et al. 2009). In addition to these processes, Hh signaling and Gli1
expression have been delineated as responders to oxidative stress,
suggesting they have a role in regulating antioxidant genes (Chen
et al. 2017; Yao et al. 2017). Similar to Nrf2, recent work has
also shown CK2 to be a positive modulator of Gli1 activation
(Jin et al. 2011) and downstream Hh pathway signaling (Zhang
et al. 2012, 2014b). Thus, toxic compounds containing the toxi-
cophore in Figure 7 may initiate a toxicity pathway by inhibition
of CK2 and disruption of cell homeostasis in one of the following
ways: a) by obstructing Nrf2 translocation to the nucleus, the
antioxidant response is diminished and leaves the cell more sus-
ceptible to oxidative stress; and b) inhibition of Gli1 could result
in silencing of the Hh pathway, disrupted cellular growth, and
additional lowered antioxidant response. This example highlights
the additional context that could be inferred from in-depth review
of relationships between the bioassays within clusters to help
inform on potential novel molecular mechanisms underlying
acute oral toxicity.

Developing nonanimal models for acute oral toxicity evalua-
tions still poses a significant challenge. While QSAR models built
from the same rat acute oral toxicity training set offered an accepta-
ble ppv on the same external test set compounds (ppv>62%,
shown in Excel Table S4), the prediction accuracy was lower than
that achieved by the presented ensemble model (Figure 5).
Furthermore, by leveraging in vitro bioactivity data, the bioprofile-
based read-across method presented herein offers a solution to
potential activity cliff issues existing in normal QSAR modeling
(Maggiora 2006) because the new compound predictions are not
limited to the information only obtained from chemical structures.
To succeed, the integration of even more in vitro bioassays will
likely be necessary to associate toxicity mechanisms for untested
potential toxicants. Many of the toxicity mechanisms are obscure,
so it is limiting to rely solely on the available bioassay data, espe-
cially unstructured public data, for toxicity evaluation purposes.
This study shows that toxicity evaluations can be significantly
enhanced by usingmeaningful biological data.

The new computational approach developed in this study can
automatically identify useful biological data from public data sour-
ces and is capable of performing bioprofile-based read-across for
untested compounds based on chemical fragment–in vitro–in vivo
relationships. By doing so, chemical toxicity mechanisms can be
elucidated. Such promising bioassays can then be used to charac-
terize unknown substances. For example, these bioassays can be
incorporated into weight of evidence approaches, such as an inte-
grated testing strategy (Hartung et al. 2013; Rovida et al. 2015).
Such strategies enable the incorporation of additional data that
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may be critical for more relevant risk assessment, including bioas-
says capable of in vitro metabolism (Jacobs et al. 2013; McKim
2010; Yoon et al. 2012) as well as computational models to predict
bioavailability (Bhhatarai et al. 2015; Kim et al. 2014). Read-
across studies using biological data strongly depend on the reliabil-
ity of bioassay testing protocols and the quality of biological data.
Potential experimental errors and other relevant issues (e.g., data
reproducibility) may affect the confidence of data from bioassays.
Although it is beyond the scope of this study, we have recom-
mended potential solutions to improve the quality of public data in
previous publications (Sedykh et al. 2011; Zhao et al. 2017).

Conclusions
For complex animal toxicity end points, such as acute oral toxic-
ity, the complete replacement of animal testing is still not feasi-
ble. However, efforts to prioritize potentially hazardous chemicals
by leveraging reliable and sufficient bioassay data that can be
linked to specific toxicity mechanism(s) can significantly reduce
the number of animals used, save great resources in chemical toxi-
cology studies, and facilitate hazard assessment of high-priority
chemicals. The data-driven profiling strategy presented in this
study provides a novel way of extracting pertinent information
from a daily updated, unstructured public resource. In contrast to
previous studies, our method incorporates both chemical (i.e.,
chemical structure) and biological (in vitro bioassays) data into the
workflow. This approach not only predicts acute oral toxicity clas-
sification but also infers biological mechanism information, offer-
ing novel insights into mechanisms of acute oral toxicity as well
as in vitro bioassays and their utility for predicting in vivo toxicity.
Furthermore, this method can easily be expanded to develop nona-
nimal models to evaluate other complex animal toxicities beyond
acute oral systemic toxicity.
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